Marula: A Stack-Based Virtual Machine For Mathematical Computation
This is a simple stack machine that can carry out arbitrarily complex mathematical computations. It’s not a universal machine as it lacks logical operators, conditional branching, and iteration, but the language it accepts can nevertheless approximate a wide range of functions.
A program for the machine is fed through the “run” method as a list of instructions and numbers. This serves as the input tape. Instructions are strings that are defined in the opcode tables below. These functions all take their arguments from the stack and return their results to the stack. Numbers can be integers or floats.
If the input tape’s read-head encounters a number, it gets pushed onto the stack. If it comes across an instruction, it will check that there are an adequate number of arguments on the stack, pop them if there are, carry out the instruction, and push the result back on to the stack. Invalid items on the tape are ignored.
If there are no relevant arguments on the stack, the instruction gets skipped. The run method returns the number at the stop of the stack after the read-head comes to the end of the tape. Empty and invalid programs return 0.
Example programs:
stack = Marula()
stack.run([5, 5, “op_mul”]) #returns 25
stack.run([2, 80, “op_div”]) #80/2 returns 40.0
stack.run([5.7, “op_tanh”]) #returns 0.999978
stack.run([17, 8, “op_argmax”]) #returns 17
import math
import collections
class Marula:
"""
This is a simple stack machine that can carry out
arbitrarily complex mathematical computations.
It's not a universal machine as it lacks logical
operators, conditional branching, and iteration,
but the language it accepts can nevertheless
approximate a wide range of functions.
A program for the machine is fed through the
"run" method as a list of instructions and numbers.
This serves as the input tape. Instructions are
strings that are defined in the opcode tables below.
These functions all take their arguments from the
stack and return their results to the stack.
Numbers can be integers or floats.
If the input tape's read-head encounters a number,
it gets pushed onto the stack. If it comes across
an instruction, it will check that there are an
adequate number of arguments on the stack, pop
them if there are, carry out the instruction, and
push the result back on to the stack. Invalid items
on the tape are ignored.
If there are no relevant arguments on the stack,
the instruction gets skipped. The run method
returns the number at the stop of the stack after
the read-head comes to the end of the tape. Empty
and invalid programs return 0.
Example programs:
stack.run([5, 5, "op_mul"]) # returns 25
stack.run([2, 80, "op_div"]) # 80/2 returns 40.0
stack.run([5.7, "op_tanh"]) # returns 0.999977
stack.run([17, 8, "op_max"]) # returns 17
"""
def __init__(self):
#Initiate stack
self.STACK = collections.deque()
#OPCode dictionaries
self.STACK_OPS = {
"op_size" : self.size,
"op_peek" : self.peek,
"op_pop" : self.pop,
"op_push" : self.push
}
self.MATH_OPS = {
"op_add" : self.add,
"op_sub" : self.sub,
"op_mul" : self.mul,
"op_div" : self.div,
"op_mod" : self.mod,
"op_flr" : self.floor,
"op_cei" : self.ceil,
"op_sig" : self.sign,
"op_abs" : self.fabs,
"op_neg" : self.neg,
"op_min" : self.argmin,
"op_max" : self.argmax,
"op_sqrt" : self.sqrt,
"op_pwr" : self.pwr,
"op_log" : self.log,
"op_exp" : self.exp,
"op_gma": self.gamma,
"op_sin" : self.sin,
"op_cos" : self.cos,
"op_tan" : self.tan,
"op_asin" : self.asin,
"op_acos" : self.acos,
"op_atan" : self.atan,
"op_sinh" : self.sinh,
"op_cosh" : self.cosh,
"op_tanh" : self.tanh,
"op_asinh" : self.sinh,
"op_acosh" : self.acosh,
"op_atanh" : self.atanh
}
self.OP_CODES = {
**self.STACK_OPS,
**self.MATH_OPS
}
#Stack manipulation methods
def size(self):
"""Get size of stack"""
return len(self.STACK)
def peek(self):
"""Get the top items of the
stack without removing it."""
if self.STACK:
return self.STACK[0]
else:
return 0
def pop(self):
"Pop item off the stack"
return self.STACK.pop()
def push(self, num):
"Push item onto the stack"
return self.STACK.append(
num)
#Mathematical operations
def add(self):
if self.size() > 1:
a = self.pop()
b = self.pop()
self.push(a+b)
def sub(self):
if self.size() > 1:
a = self.pop()
b = self.pop()
self.push(a-b)
def mul(self):
if self.size() > 1:
a = self.pop()
b = self.pop()
self.push(a*b)
def div (self):
if self.size() > 1:
a = self.pop()
b = self.pop()
self.push(a/b)
def mod(self):
"""C standard modulo"""
if self.size() > 1:
a = self.pop()
b = self.pop()
self.push(math.fmod(a,b))
def floor(self):
if self.size() > 0 and isinstance(
self.peek(),float):
a = self.pop()
self.push(math.floor(a))
def ceil(self):
if self.size() > 0 and isinstance(
self.peek(),float):
a = self.pop()
self.push(math.ceil(a))
def sign(self):
"""Get sign bit of number"""
if self.size() > 0:
a = self.pop()
if a > 0:
self.push(1)
elif a < 0:
self.push(-1)
else:
self.push(0)
def fabs(self):
"""Absolute value"""
if self.size() > 0:
a = self.pop()
self.push(abs(a))
def neg(self):
"""Inverter"""
if self.size() > 0:
a = self.pop()
self.push(-a)
def argmin(self):
if self.size() > 1:
a = self.pop()
b = self.pop()
self.push(min(a,b))
def argmax(self):
if self.size() > 1:
a = self.pop()
b = self.pop()
self.push(max(a,b))
def sqrt(self):
if (self.size() > 0
and self.peek() > 0):
a = self.pop()
self.push(math.sqrt(a))
def pwr(self):
if (self.size() > 1
and self.peek() > 0):
a = self.pop()
b = self.pop()
self.push(math.pow(a,b))
def log(self):
if (self.size() > 0
and self.peek() > 0):
a = self.pop()
self.push(math.log(a))
def exp(self):
if self.size() > 0:
a = self.pop()
self.push(math.exp(a))
def gamma(self):
if (self.size() > 0
and self.peek() > 0):
a = self.pop()
self.push(math.gamma(a))
def sin(self):
if self.size() > 0:
a = self.pop()
self.push(math.sin(a))
def cos(self):
if self.size() > 0:
a = self.pop()
self.push(math.cos(a))
def tan(self):
if self.size() > 0:
a = self.pop()
self.push(math.tan(a))
def asin(self):
if (self.size() > 0
and not self.peek() > 1
and not self.peek() < -1):
a = self.pop()
self.push(math.asin(a))
def acos(self):
if (self.size() > 0
and not self.peek() > 1
and not self.peek() < -1):
a = self.pop()
self.push(math.acos(a))
def atan(self):
if self.size() > 0:
a = self.pop()
self.push(math.atan(a))
def sinh(self):
if self.size() > 0:
a = self.pop()
self.push(math.sinh(a))
def cosh(self):
if self.size() > 0:
a = self.pop()
self.push(math.cosh(a))
def tanh(self):
if self.size() > 0:
a = self.pop()
self.push(math.tanh(a))
def asinh(self):
if self.size() > 0:
a = self.pop()
self.push(math.asinh(a))
def acosh(self):
if (self.size() > 0
and not self.peek() < 1):
a = self.pop()
self.push(math.acosh(a))
def atanh(self):
if (self.size() > 0
and self.peek() < 1
and self.peek() > -1):
self.push(math.atanh(a))
# Main method
def run(self, program):
"""
This is the input tape for the stack machine.
Programs must be in the in the form of a list
of instructions and numbers.
"""
if not isinstance(program, list):
raise ValueError(
"Inputs must be in a list.")
for element in program:
if isinstance(element, (int, float)):
self.push(element)
else:
if element in self.MATH_OPS:
try:
self.MATH_OPS[element]()
except:
continue
if self.STACK:
return self.STACK[-1]
self.push(0)
return self.STACK[0]
Full code repo available on Github
Related posts:
EXP-RTL: Exponential Retaliation In Iterated Prisoner’s Dilemma Games
Interleaved Neighborhood Algorithm: Fully Exploratory Optimization
2021-04-06 08:22 +0000